

Institute for Life Science & Technology

Data Science for Life Sciences Student Manual 2023-2024

Authors:

Dr. M.E.F. Apol J. Bosman, PhD Drs B. Barnard F. Feenstra, MSc. Dr. J. Hageman M. Herber, PhD candidate M. Kempenaar, BAS Dr. ir. D.R.M. Langers Drs. M.F. Lurvink Dr. T.A. Wassenaar R. Wedema, BAS

Table of Contents

1. PROGRAM OUTCOMES 3

2. PROGRAM OVERVIEW 4

3. PROGRAM CONTENT 4

RESEARCH PROJECT 1 DATA SCIENCE FOR PERSONAL HEALTH	5
Modules overview	5
RELATION BETWEEN MODULES	5
RELATION TO PROGRAM OUTCOMES	6
Assessment plan	7
RESEARCH PROJECT 2 INTEGRATED OMICS	8
Modules overview	8
RELATION BETWEEN MODULES	8
RELATION TO PROGRAM OUTCOMES	9
Assessment plan	.10
GRADUATION SEMESTER	.11
Modules overview	.11
BVFM23GRAD RELATION TO PROGRAM OUTCOMES	.11
BVFM23RSRPFS RELATION TO PROGRAM OUTCOMES	.11
ASSESSMENT PLAN	.11

4. MODULE MANUALS 12

DATA SCIENCE SUBJECTS 13

PROGRAMMING SUBJECTS 22

OMICS AND OMICS RESEARCH SUBJECTS 31

1. Program outcomes

The master Data Science for Life Sciences has 6 program outcomes which you should be able to do after you have finished your graduation. In all modules you will be working on these program outcomes, in the next chapters it is explained exactly how you will be working on them.

Conduct critical and creative research (CR)

The graduate demonstrates advanced expertise in formulating testable hypotheses relevant to clients' questions. The graduate possesses a comprehensive understanding of existing methods, theories and solutions to similar problems and can critically evaluate their applicability in diverse contexts. The graduate adeptly selects appropriate data research methods, providing sound justifications for their choices, or creatively adapts existing methods to develop original solutions for complex problems. Upon implementation, the graduate demonstrates a rigorous evaluation of the obtained solution, adhering to the available technical and engineering best practices in the field. The graduate iteratively refines and optimize the solution to achieve the most optimal outcome. Moreover, the graduate can transfer and generalize these methods, effectively applying them to neighbouring fields and related problems in new and unfamiliar environments.

Model meaningful information (MM)

The graduate demonstrates a high level of competence and expertise, applying a wide range of mathematical, statistical, and machine learning techniques to effectively identify complex patterns, causal relationships, and actionable insights, as well as making accurate predictions. The graduate demonstrates the ability to integrate diverse knowledge domains, to effectively handle complexity, and to extract meaningful information from data, even in the presence of incomplete or challenging datasets.

Deliver organized solutions (DO)

The graduate retrieves multilevel data from multiple sources and can organize, combine, clean, process and store those reliably, adhering to the FAIR principles (Findable, Accessible, Interoperable and Re-usable). Developed code is organized, well written, well documented, traceable via version control management systems, and suitably licensed.

Communicate effectively

The graduate communicates actively and effectively about his/her work, employing diverse modes of communication, including written, oral, and visual forms, with experts, peers, and individuals from non-specialist backgrounds. Specifically, the graduate adeptly formulates the research question or problem, provides comprehensive explanations and justifications for the chosen methods or approaches, and presents the results clearly, accompanied by a critical and reflective interpretation.

Being responsible (BR)

The graduate demonstrates awareness of ethical and legal considerations relevant to their work, taking responsibility for adhering to applicable laws and best practices. This includes a keen understanding of privacy issues, integrity, and security. Moreover, the graduate recognizes their professional responsibility within society and, whenever feasible, upholds the principles of FAIR (Findable, Accessible, Interoperable, and Reusable) for scientific data management and stewardship.

Being Entrepreneurial (BE)

The graduate demonstrates awareness of the broader and/or commercial applications of research outcomes, emphasizing a focus on practical implementation. The graduate demonstrates the ability to formulate viable business ideas and effectively engage stakeholders. As a self-directed and autonomous professional, the graduate assumes responsibility and takes proactive action when confronted with challenges.

2. Program overview

The master program is divided in four semesters. The first three semesters' courses are provided to lecture data science and programming subjects. Modules to enhance research and professional skills are provided as well. Research project needs to be conducted to apply theory and skills. The first three semesters research has to be carried out in small groups, the fourth semester is the graduation semester in which you have to carry out the research independently. You will graduate if you pass all the course modules exams, successful deliver the research projects and the proof of competence in which you proof the program outcomes and finally pass the graduation thesis, the graduation practical work and the graduation presentation (defense).

3. Program content

This chapter describes the theme of research project, the module overview shows the relation between the modules and the program outcomes and the assessment plans. Details per module such as descriptions about content, week overview, learning outcomes, literature, hours to spent and assessment method can be found in the module manual (chapter 4).

Research project 1 Data Science for personal health

The objective of this research project is to enhance students' comprehension of the Data Science domain, particularly in relation to personal health. To achieve this, health-related data will be visualized to answer health-related research questions. The students will apply fundamental data transformation and munging techniques to pre-process the data for visualization. Additionally, the project aims to reinforce the programming concepts taught in the preparatory course while teaching students the principles of good UI design. The project follows a cumulative design approach, wherein a basic prototype with a simple data structure is developed first, followed by more advanced iterations on the same theme. This allows students to build upon their existing knowledge and progressively enhance their skills.

Modules overview

Code	Name	ECTs	Т*	Short description
BFVM23PREPPROGR1	Preparatory course programming	5	Α	Basic Python
BFVM23PREPDATSC1	Preparatory course data science	5	W	Basics calculus
BFVM23PREPOMICS	Preparatory course omics	5	С	Biology
BFVM23PROG2	Programming II	5	A	Data processing + EDA
BFVM23DATASC2	Data science II	5	С	Bayesian statistics +
				numerical analysis
BFVM23PROG3	Programming III	5	Α	Data processing for
				time series + signals
BFVM23DATASC3	Data science III	5	С	Linear Algebra + Signal
				Analysis
BFVM23RSRPFS	Research and Professional skills	5	D	Scientific method and
				collaboration
BFVM23DSPH	Research Project	10	Р	

*: T is assessment type. D = digital portfolio; W = written Exam; C = computer exam; P = professional product; A = Assignment;

Relation between modules

The "Data science for personal health Project" will form the core module that allows the various skills that are learned in the other modules to be integrated and applied in a practical context. It will consist of a comparatively large project that runs throughout the semester. You will be asked to define your own health related research question and combine these questions into one design per group. Initially, there are three modules of the preparatory course which are intended for students without a sufficiently sound or broad background in life sciences. These serve to provide you with the required basics related to data analysis, programming, and biology that are necessary to successfully commence with the next modules and are considered optional if the student proves to already have the required entry level by either an exemption or passing the entry test. Subsequently, in the "Data Science II" module, you will learn how to analyze and assess data streams or data sets, either in exploratory or confirmatory fashion. This skill can be directly applied in the project, for instance to analyze time series data that are acquired by body-worn sensors that measure individual biological signals to obtain relevant summary statistics and to subsequently visualize the results to the user. This will require you to design and implement a specific analysis pipeline (e.g., using Python) and make the outcomes accessible by means of a (web) visualization (e.g., using the Python Bokeh library or the JavaScript programming language). These data analysis and visualization techniques will be covered in the module "Programming II and III". Finally, the module on "Research and Professional skills" will largely develop more general skills for which the data science for personal health projects serve as applications: for example, you may write a data management plan that pertains to your project or reflect on ethical issues surrounding the collection and processing of personal data.

For module description see chapter 4: module manual.

Relation to program outcomes

Program outcome	Assessment method
Conduct critical and	Part of the assessment for programming assignments involves evaluating the
creative research	use of an argumentative approach in justifying design decisions.
	In the data science II and III exams, students are evaluated on their ability to
	employ an argumentative approach when defending method selection and
	engaging in critical reflection of results within the context of the study case.
	The research project is assessed for critical and creative research competence
	through contributions in discussions, a paper, a code base, and a presentation.
	All should demonstrate the application of the scientific method.
	As part of self-assessment in research and professional skills , students will
	evaluate their competence using a competence card.
Model meaningful	The evaluation of the ability to integrate diverse knowledge domains, navigate
information	complexity effectively, and extract meaningful information from challenging
	datasets is conducted in the Data Science Exams and Programming
	assignments through the analysis of study cases. This competency is further
	assessed in the research project , where students are required to develop a
	website featuring comprehensive analysis and visualizations.
Deliver organised solutions	The code repository of the programming assignments as well as the research
	project is evaluated based on criteria such as the organization of code,
	documentation completeness, the comprehensiveness of the READIVIE file,
Communicate offectively	and appropriate licensing.
Communicate effectively	the research question or problem, the provided evaluations and justifications
	for the chosen methods or approaches, and the clarity of presented results
	The accessment includes code documentation in programming accignments
	provided documentation in data science exams sprint presentations within
	the research project and the research paper associated with the research
	project. Furthermore, students are expected to conduct a self-assessment of
	their competence using the research and professional skills competence card
Being responsible	Students are assessed for handling ethical issues with data during the research
	project and the programming assignments. The delivered solutions should be
	according to the FAIR principles. Furthermore, the student will conduct a self-
	assessment of the competence in the competence card (research and
	professional skills)
Being entrepreneurial	The assessment includes evaluating the student's ability to collaborate with
	others and their behavior as a self-directed and autonomous professional who
	proactively takes action when faced with challenges in the research project .
	This evaluation is done based on the taskboard participation and collaboration
	contract.

Assessment plan

Module	Quarter.Week	F/S	Method	Grading
Professional and research skills	Week 1.1	Formative	Disc Assessment	
Professional and research skills	Week 1.2	Formative	Competence card	
			self-assessment	
Preparatory course programming	1.11.5	Formative	Week	
			Assignments	
Research project	1.4	Formative	End of sprint	
Preparatory course data science (calculus)	1.9	Summative	Exam	100%
Preparatory course omics	1.9	Summative	Exam	100%
Preparatory course programming	1.10	Summative	Final Assignment	100%
	1.11	Summative	Interview	
Programming II	2.12.5	Formative	Week	
			Assignments	
Research project	2.1	Formative	End of sprint	
Research project	2.4	Formative	End of sprint	
Research project	2.7	Formative	End of sprint	
Data science II Bayesian statistics	2.8 or 2.9	Summative	Exam	50%
Data science II Numerical analysis	2.8 or 2.9	Summative	Exam	50%
Programming II	2.10	Summative	Final Assignment	100%
Professional and research skills	2.10	Formative	Competence card	
			self-assessment	
Programming III	3.13.5	Formative	Week	
			Assignments	
Research project	3.1	Formative	End of sprint	
Research project	3.6	Formative	End of sprint	
Research project	3.8	Summative	Code repository	30%
Research project	3.8	Summative	Presentation	25%
Research project	3.8	Summative	Article	25%
Research project	3.8	Summative	Conduct	20%
Data science III Linear Algebra	3.9	Summative	Exam	50%
Data science III Signal Analysis	3.9	Summative	Exam	50%
Programming III	3.10	Summative	Final Assignment	100%

Research project 2 Integrated omics

"Omics" techniques are both quantitative as well as high throughput, leading to large datasets of information amenable to analysis by advanced statistics and machine learning. First, you will be introduced to state-of-the-art lab techniques in the areas of (meta)genomics, transcript omics, metabolomics, proteomics, epigenomics, food omics, imaging, epidemiology etc. depending on project choice. You will choose a research project for which datasets of multiple types are available and formulate and test a hypothesis using appropriate quantitative methods (statistics/Machine Learning). A crucial aspect is communicating the methods and the findings to peers and clients (if applicable). Where appropriate, visualisation and web techniques from semester I are used to report and clarify the findings.

Modules overview

Code	Name	ECTs	Т*	Short description
BFVM23PROG4	Programming IV	5	Α	Elective OO / R
BFVM23DATASC4	Data Science IV	5	С	Graph Theory +
			Α	Multi variate analysis
BFVM23PROG5	Programming V	5	Α	Big data computing
BFVM23DATASC5	Data Science V	5	Α	Unsupervised machine
				learning
BFVM23PROG6	Programming VI	5	Α	Cluster computing
BFVM23DATASC6	Data Science VI	5	A	Supervised + deep learning
BFVM23RSRPFS	Research and professional skills	5	D	Competences workshops
	Research Project	10	Р	Integrated Omics

*: T is assessment type. D = digital portfolio; W = written Exam; C = computer exam; P = professional product; A = Assignment;

Relation between modules

The omics project will be centered on a research question for which several datasets from different 'omics' origins need to be integrated. Within the project in omics, the relevant biological background will be presented and discussed. Students can, depending on the need of the project deepen themselves in either R or OO in python. This The integration requires balancing within dataset and between dataset analysis of relations, for which Data Science IV provides a theoretical and practical framework (graph theory, multivariate analysis). is later complemented with machine learning and image analysis theory and methods (Data Science V+ VI). To handle and analyze the complex datasets involved, students will learn strategies for distributed computing and the implementation thereof in Programming V and VI. Against the background of large (public/private/medical) datasets, the student is made aware of FAIR data management and possible legal, societal and privacy implications (FAIR/ELSI workshops). The project will be shaped according to state-of-the-art research. To this end, the student is to present a project plan with overview of the scientific background and context in the first weeks for peers and at the end report the results as a model scientific publication with ample supplementary information.

For module description see chapter 4: module manual

Relation to program outcomes

Program outcome	Assessment method
Conduct critical and	Part of the assessment for programming assignments involves evaluating the
creative research	use of an argumentative approach in justifying design decisions.
	In the data science IV, V and VI assessments, students are evaluated on their
	ability to employ an argumentative approach when defending method
	selection and engaging in critical reflection of results within the context of the
	study case. The student needs to demonstrate understanding of existing
	methods, theories and solutions to similar problems and should critically
	evaluate their applicability in presented contexts.
	The research project is assessed for critical and creative research competence
	through contributions the paper, the code base, and the final presentation. All
	should demonstrate the application of the scientific method. The student will
	be assessed on the competence of creatively adapting existing methods to
	develop original solutions for complex problems.
	As part of self-assessment in research and professional skills , students will
	evaluate their competence using a competence card.
Model meaningful	The evaluation of the ability to integrate diverse knowledge domains, navigate
information	complexity effectively, and extract meaningful information from challenging
	datasets is conducted in the data science Exams and programming
	assignments through the analysis of study cases. This competency is further
	assessed in the research project , where students will be assessed on the result
	and discussion part in the article.
Deliver organised	The code repository of the programming and data science assignments as well
solutions	as the research project is evaluated based on criteria such as the organization
	of code, documentation completeness, the comprehensiveness of the README
	file, and appropriate licensing.
Communicate effectively	Competence in this area is evaluated through the student's presentation of the
	research question or problem, the provided explanations and justifications for
	the chosen methods of approaches, and the clarity of presented results. The
	assessment includes code documentation in programming assignments,
	the research project and the poster presentation and research paper
	associated with the research project. Furthermore, students are expected to
	conduct a self-assessment of their competence using the research and
	nrofessional skills competence card
Being responsible	Students are assessed for handling ethical issues with data during the research
being responsible	project and the programming assignments. The delivered solutions should be
	according to the FAIR principles. Furthermore, the student will conduct a self-
	assessment of the competence in the competence card (research and
	professional skills)
Being entrepreneurial	The assessment includes evaluating the student's ability to collaborate with
=0 ep. en eu en	others and their behavior as a self-directed and autonomous professional who
	proactively takes action when faced with challenges in the research project
	The student will furthermore be assessed in the research paper on awareness
	of the broader and/or commercial applications of research outcomes.
	emphasizing a focus on practical implementation.

Assessment plan

Module	Quarter.Week	F/S	Method	Grading
Research project	4.7	Formative	End of sprint	
Professional and research skills	4.8	Formative	Competence card	
			self-assessment	
Data Science IV Multi variate analysis	4.8	Summative	Assignment	50%
Data Science IV Graph Theory	4.9	Summative	Exam	50%
Programming IV	4.10	Summative	Portfolio	100%
Data Science V Unsupervised ML	1.11.4	Formative	Week	
			Assignments	
Data Science V Unsupervised ML	1.8	Summative	Final Assignment	100%
Programming V	1.9	Summative	Portfolio	100%
Research project	1.10	Formative	Midterm	
			presentation	
Programming VI	2.7	Summative	Final Assignment	100%
Data Science VI Supervised and Deep	2.8	Summative	Final Assignment	100%
Learning			+ interview	
Research project	2.10	Summative	Research plan	15%
Research project	2.10	Summative	Code repository	25%
Research project	2.10	Summative	Poster	15%
			Presentation +	
			defence	
Research project	2.10	Summative	Article	35%
Research project	2.10	Summative	Conduct	10%
Professional and research skills	2.10	Formative or	Competence card	100%*
		Summative	self-assessment	

*When students request for summative assessment

Graduation Semester

To graduate from the master Data Science for Life Science, you must also write a master thesis based on research that you have carried out in graduation project in the final semester. For all the regulations concerning the graduation project a graduation manual will be handed to the students. Furthermore, you need to finish the research and professional skills subject by mean of a Proof of competence if not fulfilled yet.

Modules overview

Code	Name	ECTs	T *	Short description
BFVM23GRAD	Graduation project and thesis	30	W/ P/T /F	final research project in which the student conducts independently a research project at master level
BFVM23RSRPFS**	Proof of competence	10	D/F	Final digital portfolio in which the student delivers documented evidence of competences described in the program outcomes

*: T is assessment type. D = digital portfolio; W= practical work; T = Thesis; F = Defense

** when not already fulfilled

BVFM23GRAD Relation to program outcomes

The student is required to demonstrate the program outcomes through the completion of the thesis, practical work, and the defense. See also the graduation assessment form in the graduation blackboard course for more details.

BVFM23RSRPFS Relation to program outcomes

The student is required to provide proof of competences of the programme outcomes by means of a digital portfolio and its defense. See also the competence card manual provided on blackboard for more details.

Assessment plan

Module	Time of assessment	<u>f</u> ormative / <u>s</u> ummative	Method	Grading
Graduation	Week 20	summative	Thesis	60%
	Week 20	summative	Defence	15%
	Week 20	summative	Practical work	25%
Research and professional skills*	Week 19	summative	Proof of competence	100%

*When not already fulfilled

4. Module manuals

In this chapter an overview is given off all the course modules and professional and research skills modules. At first a glossary is presented.

Glossary

Term	Description
Tutor groups	Small group of students that come together to discuss and explain study material to
	each other that is assigned weekly, and to complete accompanying exercises. The
	lecturer is available at the onset of meetings for coordination of the students' study
	progress and furthermore on request to provide additional explanation
Courses	A course is a module. There are theoretical / skills modules like the data science
	modules, programming modules. There are skills related modules like the professional
	skills and research skills modules and there are research project modules.
Preparatory	Based on the decision of the admission committee a student has to conduct the
course	preparatory course. The preparatory course is a module to prepare the students up to
	the required level for following modules.
Lectures	A lecture usually involves a member of the senior academic teaching staff presenting
	The lecturer presents information to a large class, and while questions are
	ancouraged there is minimal group discussion
Computer labs	During the computer labs you work either individually or in a small group to learn and
computer labs	experiment with the course material in a hands-on environment
Tutorial session	A combination of theoretical background presentation in the format of a lecture
	application of those concepts by means of tutorials with encouragement of
	experiments to be conducted in the computer labs
Project meetings	Meetings in which the progress of the research project (DS for personal health project
and sprint	and the Integrated omics project) is discussed with the team and the tutor. During
meetings.	project meetings feedback is provided on personal development, project
_	performance, research (research question, hypothesis, validity and results) and the
	validity / future use in the field. During sprint meetings external stakeholders might
	attend.
Workshop /	Workshops or Tutorials usually involve a member of teaching staff presenting themes
Tutorial	and concepts, or the development of a skill, related to the course of study. Workshops
	may involve more hands-on learning however also allow discussion, interaction,
	presentation and debate on a given topic.
Masterclass	Masterclasses are lectures about cutting-edge knowlegde direct from researchers
	active in the field. These classes can be organized by the teaching staff as well as the
	students themselves
Graduation	I ne graduation project is the final research project in which the student conducts
thesis	independently a research project at master level to be reported in a master thesis.
Broject in omics	The English language peologism emics informally refers to a field of study in hielegy
Froject in onnes	ending in <i>-omics</i> such as genomics, proteomics or metabolomics. The related suffix -
	ome is used to address the objects of study of such fields, such as the genome
	proteome or metabolome respectively. Omics aims at the collective characterization
	and quantification of pools of biological molecules that translate into the structure.
	function, and dynamics of an organism or organisms. There are two research projects
	related to the omics field (excluded the graduation project). The q DS for personal
	health project and the integrated omics project.
Integrated omics	Integration of current "omics" techniques and data in order to answer research
	questions that cannot be answered using only one type of analysis

Data Science subjects

Module code	BFVM23PREPDATASC1	
Module name	Preparatory course data science	
Module designers	Bryan Williams, Dave Langers, Fenna Feenstra, Marion Dam	
Contact	Fenna Feenstra	
Grading Teachers	Fenna Feenstra	
ECTS and grading	5	
Learning outcomes	 You interpret mathematical notation. You apply basic equations analytically, including linear, rational, quadratic, trigonometric, exp/log equations in one variable. You execute differentiation and integration of standard functions in simple forms. You understand basic matrices operations 	
Description	In this course, the student will revise basic mathematical skills and knowledge in the fields of calculus. This is one of the three optional modules of the Preparatory course. It's intended for students without a sound background in mathematics. The basic mathematical skills are a required level for the data sciences subjects	
Teaching method	Twice a week, students meet in small tutor groups (2 hrs) to discuss and explain study material to each other that is assigned weekly, and to complete accompanying exercises. The lecturer is available at the onset of meetings for coordination of the student's study progress and furthermore on request to provide additional explanation. Students submit their completed assignments	
Scheduled	Quarter1, Year 1	
Assessment	Written Exam	
Competences	Model meaningful information	
Entrance requirements	A basic level of mathematics is required	
Planning	 Week 1: Assessment and Notations Assessment (first lesson) Introduction to mathematical notation and conventions. Week 2: Solving Equations and Functions basic algebraic operations and rules, linear and quadratic equations, and systems of linear equations. piecewise-defined functions, composite functions polynomial functions Week 3: Special functions and derivatives Exponential, logarithmic, trigonometric, and their properties. Introduction to derivatives Week 4: More derivatives and anti-derivatives Applications of derivatives such as optimization and local extrema. Introduction integration & applications for integration Week 6: Matrices Arithmetic Matrices and vectors as arithmetic or geometric objects. Matrix/vector addition/subtraction and multiplication. 	
Contact time	28 hr (7 weeks x 2 x 2-hr blocks/week) – theoretical	
	lectures/demonstrations	
Literature	Suggested: S. K. Chung. Understanding basic calculus Calculus Syllabus on Blackboard	

External links/sources	https://www.khanacademy.org/math/algebra-basics
	https://www.khanacademy.org/math/differential-calculus/
	https://www.khanacademy.org/math/integral-calculus
	https://www.khanacademy.org/math/algebra-home/alg-matrices
Language	English

Module code	BFVM23DATASCNC2
Module name	Data science 2
Module designers	Dave Langers, Emile Apol
Contact	Fenna Feenstra
Grading Teachers	Dave Langers, Emile Apol
ECTS and grading	5
Learning outcomes	 You assess the quality of life science data and perform data clean- up You apply frequentist and Bayesian methods to estimate
	 parameters with standard errors and confidence intervals You implement and apply numerical methods for analysis of data, including differentiation, integration and finding roots and extrema You explain how discretization, round-off and error propagation
	may affect the results of outcomes
Description	This course is designed to provide students with the practical implementation of Bayesian Statistics and Numerical Analysis using Python.
	The first subject, Bayesian Statistics, covers topics such as constructing histograms, calculating sample moments, estimating parameters using the Method of Moment and Maximum Likelihood methods, evaluating various distributions, using null hypothesis significance tests, assessing normality, calculating standard errors and confidence intervals, and interpreting effect sizes. Students will learn how to use Bayes' theorem/law to calculate conditional probabilities and evaluate Bayesian estimators for parameters of various distributions using conjugated priors.
	The second subject, Numerical Analysis, is focused on the application of numerical methods to solve mathematical problems. The course will provide an overview of numerical differentiation, numerical integration, root finding, optimization, and differential equations, and characterize their propagated errors. By the end of the course, students will have an understanding of Bayesian Statistics and Numerical Analysis, and the ability to apply these concepts in their research
Teaching method	The course consists of lectures, tutorials, and computer labs. In the tutorial sessions held four times a week, which last for 1.5 hours, students can benefit from a combination of lectures and computer labs.
Scheduled	Quarter2, Year1
Assessment	The final grade will be composed based on two computer exams: Bayesian Statistics 50% Numerical Analysis 50%
Competences	Conduct critical and creative research Model meaningful information
Entrance requirements	This module presupposes a basis in programming skills and calculus. Prior to enrolling in this module, students are expected to demonstrate their

	competency by fulfilling the requirements of BFVM23PREPROGR1
	BFVM23PREPDATASC1 or equivalent courses.
Planning	Bayesian statistics
	Week 1: Overview estimation techniques, normal distribution
	Week 2: Normal distribution, linear regression
	Week 3: Other continuous distributions
	Week 4: Discrete distributions, Bayes law
	Week 5: Bayesian estimators
	Week 6: Bootstrapping, confidence interval
	Week 7: exam training
	Numerical analysis
	Week 1: Discrete number representations
	Week 2: Numerical differentiation
	Week 3: Numerical Integration
	Week 4: Root finding
	Week 5: Optimization
	Week 6: Differential equations
	Week 7: Practical applications in Life Sciences
Contact time	56 hr (7 weeks x 2 subtopics x 2 2-hr blocks/week; i.e. 1 scheduled full
	day/week in total, per 5 EC) – including both plenary activities (e.g.
	theoretical lectures/demonstrations) and supervised practical work (e.g.
	individual/group exercises).
Literature	Required:
	"Numerical Methods in Engineering with Python 3", Jaan Kiusalaas, 2013,
	Cambridge University Press, ISBN: 9781107033856 (hardcover) /
	9781139611282 (e-book), https://doi.org/10.1017/CBO9781139523899
	Optional:
	Downey, A.B., 2012. Green Tea Press Think Bayes Green Tea Press
External links/sources	See Blackboard
Language	English

Module code	BFVM23DATASCNC3
Module name	Data science 3
Module designers	Dave Langers
Contact	Fenna Feenstra
Grading Teachers	Dave Langers
ECTS and grading	5
Learning outcomes	 You manipulate mathematical expressions involving real and complex numbers, scalars, vectors and matrices. You invert and decompose matrices, assisted by computer, and diagnose and solve rank-deficient or ill-conditioned problems. You process time-series and image data, including visualization, resampling and interpolation. You apply linear filters and other data transformations in both the time- and frequency domains.
Description	This course introduces the fundamental concepts and techniques of linear algebra and their applications in solving problems in different areas. The course begins with an introduction to complex numbers, vectors and matrices and how to operate on these. It includes topics such as matrix determinants and trace, matrix inversion and decomposition, and characterization of matrix rank. In parallel, the course covers signal analysis. Topics covered in this section include interpolation and curve fitting, windowing, filtering and convolution, Fourier transformation, and discrete filter design. Overall

	students learn to analyze a	and ma	nipulate a wide range of time series and
Toophing mothed	The source consists of last	uroc t	emove noise, and emplate labe in the tutorial
reaching method	sessions held four times a	ures, ti	which last for 1 5 hours, students can
	benefit from a combinatio	n of loc	stures and computer labs
Schodulod	Quarter 2 Vear 1	ii oi iec	
Assessment	The final grade will be com	macad	based on two partial avams. One written
Assessment	(M) and ana computer out	iposed	based on two partial exams. One written
	(w) and one computer exa	am (C)	l
	Linear Algebra	50%	W
	Signal Analysis	50%	C
Competences	Conduct critical and creati	ve rese	arch
	Model meaningful informa	ation	
Entrance requirements	To enroll in and be evaluat	ted for	this subject, completion and or granted
	exemptions of 3 preparato	ory cou	rses is required.
Planning	Linear Algebra		
	Week 1: Gaussian eliminat	tion	
	Week 2: Matrix algebra &	matrix	inversion
	Week 3: Complex number	arithm	etic
	Week 4: Introduction com	plex an	alysis
	Week 5: Matrix transform	ations	
	Week 6: Operations on ma	atrices	
	Week 7: Ligenvalues & eig	envect	ors
	Signal Analysis		
	Week 1: Interpolation		
	Week 2: Curve fitting		
	Week 3: Global and local s	ignal a	pproximation
	Week 4: Fourier transform	is i	
	Week 5: Frequency-domai	in analy	/SIS
	Week 6: Signal filtering		9 images
	Week 7: Applications, time	e-series	s & images
Contact time	56 hr (7 weeks x 2 subtopi	CS X Z Z	-nr blocks/week; i.e. 1 scheduled tull
	day/week in total, per 5 E	-) — INC	luding both plenary activities (e.g.
	individual/group eversions	nstratio	ons) and supervised practical work (e.g.
Literature	literature:).	
Literature	Literature:		laches anying 2020 addition university of
	Iviath 1410 – Elementary L	Inear A	agebra, spring 2020 edition, university of
	https://www.es.uloth.es/o	.K, fitamot	Touthooks (Math 1410, shook adf
	"Numerical Methods in En	nizpat,	ng with Dython 2" Joan Kiusalaas 2012
	Combridge University Pres		• 0781107022856 (bardcover) /
	9781139611282 (p-hook)	httne•/	//doi org/10 1017/CB09781139523899
External links/sources	Essence of linear algebra	ideos:	, doi.org/10.1017/0000701100020099
	"NumPy Crash Course - Co	mnlote	Tutorial"
	"Complete Python NumPy	/ Tutori	al"
	English	rutuli	<u>ur</u>
Language			

Module code	BFVM23DATASCNC4
Module name	Data Science 4
Module designers	Martijn Herber, Peter Kroon, Tsjerk Wassenaar
Contact	Fenna Feenstra
Grading Teachers	Peter Kroon, Tsjerk Wassenaar
ECTS and grading	5
Learning outcomes	 You can explain whether and how a life science data set corresponds to a graph

	 You can implement available graph-based algorithms to process data You can explain whether and how a life science data set can be described by a multiset multilinear model You can implement a specific multiset multilinear model for integrative modelling of data
Description	This course introduces to relational models of data, with a focus on graphs and multilinear models. The course begins with an overview of graph theory, including the concepts of graphs, trees, adjacency matrix, directed acyclic graphs, paths and cycles, tree search, shortest path, random walks, Markov chains, sorting, and algorithmic complexity. The course then delves into the analysis of complex datasets using multivariate linear models, including multiple linear regression, partial least squares, canonical correlations, singular value decomposition, and principal component analysis. Throughout the course, students will learn various methods for investigating and assessing relational features and complex datasets using graphs and multilinear models, with applications to the life sciences. Students will also gain practical experience through programming assignments and data analysis projects.
Teaching method	Each week would consist of lectures, readings, programming assignments, and problem sets to reinforce the concepts learned. The first four weeks would focus on graph theory, while the remaining three weeks would cover multivariate analysis
Scheduled	Quarter 4, Year 1
Assessment	The final grade will be composed based on two partial exams. One computer exam (C) and one assignment. The assignment is an 8 hours individual assignment.graph theory50%Cmultivariate analysis50%A
Competences	Conduct critical and creative research Model meaningful information
Entrance requirements	To enroll in and be evaluated for this subject, completion and or granted exemptions of 3 preparatory courses is required.
Planning	 Graph Theory Week 1: Bridges of Koningsbruggen and Euler tours, What is a graph, node, edge, where to find them, Types of graphs, Programming with graphs, Dijkstra's algorithm Week 2: Bipartite graphs, planar graphs, embeddings, Map coloring, DiGraphs, in/out degree, strongly/weakly connected, trees, forests, DAGs, BFS, reachability. Kahn's algorithm Week 3: Cliques, communities, clustering coefficients, centrality, Adjacency matrix, graph Laplacian, Spectral graph theory, Spectral embedding, Markov modeling and random walks. Normalized spectral graph partitioning Week 4: Overflow Multivariate Analysis Week 5: Introduction overview and components Principal Component Analysis (PCA) and Factor Analysis (FA) Week 6: Regression (MLR, PCR, PLS-R) Relations within and between two sets (SVD, PA, CCA)

	Week 7:
	 Distances and graphs (MDS, SGP)
	- Discriminant analysis
Contact time	56 hr (7 weeks x 2 subtopics x 2 2-hr blocks/week; i.e. 1 scheduled full
	day/week in total, per 5 EC) – including both plenary activities (e.g.
	theoretical lectures/demonstrations) and supervised practical work (e.g.
	individual/group exercises).
Literature	Matrix-Based Introduction to Multivariate Data Analysis by Kohei Adachi
	Graph Theory and Complex Networks ("GTCN") (c)2010 Maarten van Steen
	ISBN 978-90-815406-1-2 Chapters: 1, 2, 3, 6, 9.
	For reference only: Mathematics for Computer Science ("MCS") (c)2015
	Lehman, Leighton, Meyer Available here under Creative Commons license
	Chapters: 1, 3, 4, 5.
External links/sources	https://networkx.org/documentation/stable/
	Dijkstra Algorithm videos:
	https://en.wikipedia.org/wiki/Dijkstra%27s_algorithm
	https://www.youtube.com/watch?v=GazC3A4OQTE
	https://www.youtube.com/watch?v=ySN5Wnu88nE
Language	English

Module code	BFVM23DATASCNC5
Module name	Data science 5
Module designers	Tsjerk Wassenaar, Fenna Feenstra, Bart Barnard
Contact	Fenna Feenstra
Grading Teachers	Fenna Feenstra
ECTS and grading	5
Learning outcomes	 You utilize an argumentative approach to select and apply appropriate unsupervised machine learning techniques and algorithms for a given problem in life science, while also being able to evaluate their effectiveness. You can execute the general steps of the machine learning lifecycle, including data engineering, model selection, hyperparameter tuning, and model deployment, and apply them effectively to life science problems. You demonstrate knowledge and understanding of the challenges and limitations of unsupervised machine learning in the context of the life science problem at hand
Description	This course is an introduction to machine learning, with a particular focus on unsupervised machine learning techniques in the domain of life science. Throughout this course, students will learn about the basic concepts and techniques of unsupervised machine learning, and how to implement these including data reduction, multidimensional scaling, manifold learning, clustering, and outlier detection. They will also be introduced to some of the most widely used algorithms in these areas and how these techniques can be applied to problems in life science. Furthermore, this course will cover general steps in the machine learning lifecycle, including data engineering, model selection, hyperparameter tuning, and model deployment. By the end of this course, students will have a solid understanding of the principles and applications of machine learning in the context of life science and be well-prepared to take on more advanced topics in machine learning.
Teaching method	Method selection and model development strategies will be discussed during lectures and tutorials. Throughout the course, students will work on short weekly assignments to reinforce their understanding of the concepts

	taught. Peer feedback will be given to enable students to improve their
	elaboration and design
Scheduled	Quarter 1, Year 2
Assessment	At the end of the term, students will submit a portfolio of their
	assignments, which will be graded. In case the portfolio is considered
	insufficient, specific repair assignments will be given.
Competences	Conduct critical and creative research
	Model meaningful information
	Deliver organized solutions
	Communicate Effectively
Entrance requirements	To enroll in and be evaluated for this subject, completion and or granted
	exemptions of 3 preparatory courses is required.
Planning	Week 1: Introduction to Machine Learning
	- Overview of Machine Learning and its applications in life science
	- Basics steps in Python for machine learning
	Week 2: Unsupervised Machine Learning
	- Introduction unsupervised learning
	- Dimensionality reduction techniques
	- Clustering techniques
	 Portfolio assignment dataset cluster and visualization
	Week 3: Manifold Learning
	- Introduction to manifold learning and its applications
	- Non-linear dimensionality reduction techniques
	- Portfolio assignment
	Week 4: Outlier Detection
	- Types of outlier detection techniques
	- Portfolio assignment
	Week 5: Machine Learning Lifecycle
	- Data engineering: data preprocessing feature selection and
	feature engineering
	Model selection and hypernarameter tuning
	Model deployment: model evaluation and deployment strategies
	Week $6 - 10^{\circ}$ Work on portfolio
Contact time	42 hr (7 weeks x 3 x 2-hr blocks/week: i.e. 1 scheduled 6 hr/week in total
	$rac{1}{2}$ m (7 weeks x 5 x 2 m blocks) week, i.e. 1 seneduce of m) week in total, per 5 FC) – including both plenary activities (e.g. theoretical
	lectures/demonstrations) and supervised practical work (e.g.
	individual/group exercises)
Literature	Géron Aurélien Hands-on machine learning with Scikit-Learn Keras and
	TensorFlow: Concepts tools and techniques to build intelligent systems
	O'Reilly Media
External links/sources	https://arxiv.org/pdf/2202.02958.pdf
	Fnglish
Lunguage	

Module name	BFVM23DATASCNC6
Module designers	Dave Langers, Fenna Feenstra, Bart Barnard
Contact	FEFE
Grading Teachers	Dave Langers, Bart Barnard
ECTS and grading	5
Learning outcomes	 You explain for several frequently used machine learning strategies and algorithms how they work and when they are applicable. You implement machine learning algorithms in Python for prediction and classification You check the validity of outcomes from the methods and algorithms used

	 You design a (pre)processing pipeline to extract features from image data
	 You implement a convolutional neural network to perform image classification and image recognition
Description	This course provides an overview of the key concepts and techniques used in predictive modeling, focusing on machine learning algorithms. Students will learn a wide range of machine learning algorithms, including k-nearest neighbor, logistic regression, decision trees, support vector machines, and neural networks. The course covers optimization and evaluation techniques such as ensemble techniques, feature selection, cross- validation, over-/underfitting, regularization, learning curves, confusion matrices, and ROC curves. In addition, the course includes image analysis techniques using deep learning by means of convolutional neural networks. Students will gain practical experience implementing these techniques in Python. Finally, the course concludes with a comprehensive overview of the real- world applications of artificial intelligence in the field of life sciences.
Teaching method	Method selection and model development strategies will be discussed during lectures and tutorials. Throughout the course, students will work on short weekly assignments to reinforce their understanding of the concepts taught.
Scheduled	Quarter 2, Year 2
Assessment	The student's performance in the course will be evaluated through a combination of a final individual assignment and a verbal exam, in which they will be asked to present and defend their work and choices
Competences	Conduct critical and creative research Model meaningful information Deliver organized solutions Communicate Effectively
Entrance requirements	To enroll in and be evaluated for this subject, completion and or granted exemptions of 3 preparatory courses is required.
Planning	 Week 1 Recap ML landscape, terminology, main challenges, applications. Recap Cycle: problem definition, data load, inspect, preprocess, split, train, validate, evaluate, finetune Model evaluation metrics classification and regression/feature selection, keep it simple, baseline Week 2 Linear regression / gradient descent / polynomial regression
	 Overfitting / Underfitting / regularization / Learning curve Logistic regression / Support Vector Machine focus linear and Gaussian kernel Week 3 Trees / Naïve Bayes
	 Optimizing: Bagging, boosting, ensemble learning ML ops Week 4: Multi-layer perceptron (forward-propagation, activation functions, classification vs. regression) Training deep neural networks (loss-function, back-propagation)
	 stochastic gradient descent, initialization Over/underfitting (cross-validation, loss-curve, early stopping, L1/L2-regularization, dropout) Week 5:

	 Convolutional neural networks (convolutional layers, maxpooling, data augmentation) Using pre-trained models (freezing, fine-tuning)
	Week 6:
	- Overview of Al applications
	 Work on final assignment
	Week 7: work on final assignment
Contact time	42 hr (7 weeks x 3 x 2-hr blocks/week; i.e. 1 scheduled 6hr/week in total
	per 5 EC) – including both plenary activities (e.g. theoretical
	lectures/demonstrations) and supervised practical work (e.g.
	individual/group exercises).
Literature	Géron, Aurélien. Hands-on machine learning with Scikit-Learn, Keras, and
	TensorFlow: Concepts, tools, and techniques to build intelligent systems.
	O'Reilly Media.
	"Deep Learning with Python", Francois Chollet, 2017/2018, Manning
	Publications, ISBN: 9781617294433 (paperback) / 9781638352044 (ebook),
External links/sources	https://www.manning.com/books/deep-learning-with-python
Language	English

Programming subjects

Module code	BFVM23PREPPROGR1
Module name	Preparatory course programming
Module designers	Ronald Wedema
Contact	Fenna Feenstra
Grading Teachers	Ronald Wedema / Fenna Feenstra / Arne Poortinga
ECTS and grading	5
Learning outcomes	 You apply various data types, implement functions, create and use modules, and effectively manipulate text files in Python to solve several bioinformatics problems
	 You transform a given problem into a robust and flexible object- oriented software design. You Incorporate exception-handling mechanisms into Python software solutions to ensure the robustness of the software
	 solution. You showcase professionalism by delivering appropriate documented and tested software solutions You can navigate the Linux shell proficiently and perform basic text-processing tasks.
Description	Overview The course will start with introducing the basic programming concepts, code organization, data types, structures, and functions/standard libraries. Followed by more advanced technologies like the concepts of object- oriented programming. Context learning line
	In this course, the student will revise the basics of programming in preparation for the Programming 1 course needed for the DS for personal health project assignment. This is one of the three optional modules of the Preparatory course. It's intended for students without a sound background in programming.
Teaching method	Each week, students will have the opportunity to deepen their knowledge of Python through assignments that will receive formative feedback. The assignments will be introduced by the lecturer with relevant context and theoretical background, and students will be encouraged to actively participate in group discussions and peer review to enhance their learning experience and improve their work.
Scheduled	Quarter1, Year1
Assessment	The student can prove the learning outcomes by an individual final assignment solution. The solution should translate the problem into a modular Python software design that is executable, which deals with possible errors, and is properly documented.
Competences	Model meaningful information. Deliver organized solutions. Communicate Effectively.
Entrance requirements	A basic level of programming is required
Planning	Week 1 – 5: working on the week assignments. Week 6 – 8: working on final assignment.
Contact time	56 hr (7 weeks 2 x 4-hr blocks/week; i.e. 1 scheduled full day/week in total, per 5 EC) – including both plenary activities (e.g. theoretical lectures/demonstrations) and supervised practical work (e.g. individual/group exercises).
Literature	Head First Python: A Learner's Guide to the Fundamentals of Python Programming, A Brain-Friendly Guide
External links/sources	Blackboard

Language	English

Module code	BFVM23PROGRAM2
Module name	Data processing and data exploration
Module designers	Fenna Feenstra
Contact	Fenna Feenstra
Grading Teachers	Fenna Feenstra, Peter Kroon
ECTS and grading	5
Learning outcomes	 You can apply Python, Numpy and pandas to effectively clean, transform, and structure raw data into a format suitable for analysis. You evaluate and choose appropriate data exploration, processing, analysing and visualization methods. You critically assess trade-offs between different strategies and justify the chosen approach. You design and develop functional and visually appealing data visualizations that effectively communicate insights and finding of categorical and non-time related data. You create interactive and informative visualizations. You demonstrate the ability to create a well-organized and well-documented codebase, with clear separation of concerns and
	modular components, all managed through a Git repository
Description	This course is designed to provide practical skills for processing and analyzing data, preparing it for modelling and visualization. You will learn to work with data science tools such as Jupyter Notebooks, NumPy, Pandas, Matplotlib, and Bokeh. Each week, you will practice programming techniques for loading, cleaning, analyzing, and visualizing different types of data, mostly focused on numerical and categorical data. You will explore best practices for organizing and documenting to ensure that it remains readable, understandable, and reusable over time. By the end of this course, you will have a solid understanding of the data processing pipeline and be able to use these tools and techniques to handle diverse datasets, conduct exploratory data analysis, and create effective visualizations.
Teaching method	Each week, students will have the opportunity to deepen their knowledge of Python data processing through assignments that will receive formative feedback. The assignments will be introduced by the lecturer with relevant context and theoretical background, and students will be encouraged to actively participate in group discussions and peer review to enhance their learning experience and improve their work. Upon request, additional lectures will be provided on theoretical topics.
Scheduled	Quarter 2, Year 1
Assessment	The final assignment requires students to define a research question based on at least two data sources that can be merged into a tidy dataset. The research question should be life science related. The question should be answered using an interactive visual, and if possible, tested for significance. The code should be well-documented, well-organized, and efficient, with all relevant information included in a readme file. The assessment criteria include data quality and quantity inspection, explicit assumptions and presuppositions, appropriate transformations, efficient coding, and functional informative visualizations. Students can choose to

	use a dataset combination provided on Plackboard, two datasets from
	different sources, or data from their own project
Commenter	
Competences	Conduct critical and creative research
	Deliver organized solutions
	Communicate Effectively
	Being responsible
Entrance requirements	BFVM23PREPPROGR1
Planning	Each week consists of two blocks of 4 hours each.
	Week 01-04: Weekly Assignments and Formative Feedback
	- At the beginning of each week, there will be a code review and an
	introduction to the weekly assignment.
	 During the first block, students will work on the weekly
	assignment.
	- During the second block, there will be lectures on theoretical
	concepts upon request, and students will continue working on the
	weekly assignment.
	- Formative feedback will be provided on the weekly assignments
	to help students improve their understanding and skills.
	Week 05-07: Final Assignment and Summative Feedback
	- During weeks 05-07, students will work on their final assignment.
	which will be a life science-related research question answered
	using interactive visualization and tested for significance. The
	lecturer and teaching assistance will be available for consultation
	and assistance. Loctures on theoretical concents can be provided
	upon request
	upon request.
	Once the assignment is submitted summative reedback will be provided on
	the final assignment to assess student learning and mastery of the course
	objectives.
Contact time	56 hr (7 weeks 2 x 4-hr blocks/week; i.e. 1 scheduled full day/week in total,
	per 5 EC) – including both plenary activities (e.g. theoretical
	lectures/demonstrations) and supervised practical work (e.g.
	individual/group exercises).
Literature	Python for Data Analysis, 3rd Edition by Wes McKinney Publisher(s):
	O'Reilly Media, Inc. ISBN: 9781098104030
External links/sources	External links to course material gitbook and github repository will be
	provided on blackboard
Language	English

Module code	BFVM23PROGRAM3
Module name	Data processing for signal and streaming data
Module designers	Fenna Feenstra, Bart Barnard
Contact	Fenna Feenstra
Grading Teachers	Fenna Feenstra, Peter Kroon, Bart Barnard
ECTS and grading	5
Learning outcomes	 You demonstrate a high level of competence in applying python and relevant libraries as well as appropriate mathematical, and statistical methods to effectively identify patterns, causal relationships, and actionable insights. You adeptly select appropriate data analysis methods, provide sound justifications for your choice, or creatively adapt existing methods to develop solutions for the problems. You can integrate diverse knowledge domains, effectively handle complexity, and extract meaningful information from data, even in the presence of incomplete or challenging datasets.

	 You develop a maintainable and effective (pre-)processing and evaluation pipeline for time series and or signal data and streaming data. You adhere to the fair principles. Your code is organized, well written, well documented, traceable via version control management systems, and suitably licensed.
Description	This course teaches practical skills for processing and analyzing time-series, streaming, and signal data using popular data science tools such as Jupyter Notebooks, NumPy, Pandas, and Bokeh. Throughout the course, you will practice programming techniques for loading, cleaning, analyzing, and visualizing streaming data, with an emphasis on creating maintainable solutions. By the end of the course, you will have a solid understanding of the data processing pipeline and be able to handle diverse streaming data, conduct exploratory data analysis, and create effective visualizations. The course is designed to equip you with the skills needed to work with complex data and provide new insights as a foundation for future research and exploration.
Teaching method	Each week, students will have the opportunity to deepen their knowledge of Python data processing through assignments that will receive formative feedback. The assignments will be introduced by the lecturer with relevant context and theoretical background, and students will be encouraged to actively participate in group discussions and peer review to enhance their learning experience and improve their work. Upon request, additional lectures will be provided on theoretical topics.
Scheduled	Quarter 3, Year 1
Assessment	The final assignment requires students to define a research question based on timeseries data. The research question should be life science related. The question should be answered using an interactive visual and should include signal analysis. The code should be well-documented, well- organized, and efficient, with all relevant information included in a readme file. The assessment criteria include data quality and quantity inspection, explicit assumptions and presuppositions, appropriate transformations, efficient coding, and functional, informative visualizations. Students can choose to use a data provided on Blackboard, or data from their own project
Competences	Conduct critical and creative research Model meaningful information Deliver organized solutions Communicate Effectively Being responsible
Entrance requirements	To enroll in and be evaluated for this subject, completion and or granted exemptions of 3 preparatory courses is required.
Planning	 Each week consists of two blocks of 4 hours each. Week 01-04: Weekly Assignments and Formative Feedback At the beginning of each week, there will be a code review and an introduction to the weekly assignment. During the first block, students will work on the weekly assignment. During the second block, there will be lectures on theoretical concepts upon request, and students will continue working on the weekly assignment. Formative feedback will be provided on the weekly assignments to help students improve their understanding and skills. Week 05-07: Final Assignment and Summative Feedback During weeks 05-07, students will work on their final assignment, which will be a life science-related research question answered using interactive visualization. Students. The lecturer and teaching

	assistance will be available for consultation and assistance. Lectures on theoretical concepts can be provided upon request. Once the assignment is submitted summative feedback will be provided on the final assignment to assess student learning and mastery of the course objectives.
Contact time	56 hr (7 weeks 2 x 4-hr blocks/week; i.e. 1 scheduled full day/week in total, per 5 EC) – including both plenary activities (e.g. theoretical lectures/demonstrations) and supervised practical work (e.g. individual/group exercises).
Literature	Python for Data Analysis, 3rd Edition by Wes McKinney Publisher(s): O'Reilly Media, Inc. ISBN: 9781098104030
External links/sources	External links to course material gitbook and github repository will be provided on blackboard
Language	English

Module code	BFVM23PROGRAM4
Module name	OO for big data (elective)
Module designers	Bart Barnard, Martijn Herber
Contact	Fenna Feenstra
Grading Teachers	Bart Barnard
ECTS and grading	5
Learning outcomes	 You design and develop efficient (parallel) solutions for computational problems, considering scalability, efficiency, and optimization techniques like list comprehensions, generators, and map-reduce algorithms. You demonstrate a Divide and Conquer approach, in both mindset and algorithmic strategies. You integrate SOLID principles into the design and architecture of software systems, ensuring robustness, extensibility, and maintainability. You effectively manage the life cycle of objects and interactions between multiple classes, employing advanced strategies such as dependency injection and design patterns. You implement testing strategies to ensure the reliability and correctness of your software solutions. You demonstrate professionalism and deliver organized and responsible solutions to computational problems, adhering to FAIR (Findable, Accessible, Interoperable, and Reusable) principles and ethical considerations. Show awareness of broader and/or commercial applications of research outcomes, emphasizing a practical implementation focus
Description	This course teaches students how to design parallel solutions for
	computational problems that can't be solved by a single computer. It will cover topics such as design patterns for distributed systems, architecture and modeling, and design considerations for large-scale distributed systems. The course emphasizes the use of SOLID principles, object life cycle, and multiple class interaction to enable effective parallel solutions. Students will also learn to use list comprehensions, generators, and map- reduce techniques to design efficient parallel solutions. Finally, the course covers the use of Divide and Conquer algorithms, which help to divide a unit of work into smaller sub-problems that can be easily distributed over several machines. Students will learn to apply this mindset to their designs and develop effective parallel solutions
Teaching method	Design and test strategies will be discussed during lectures and tutorials. Throughout the course, students will work on short weekly assignments to

	reinforce their understanding of the concepts taught. Peer feedback will
	be given to enable students to improve their elaboration and design skills
Scheduled	Quarter 4, Year 1
Assessment	At the end of the term, students will submit a portfolio of their
	assignments, which will be graded. In case the portfolio is considered
	insufficient, specific repair assignments will be given.
Competences	Deliver organized solutions
Entrance requirements	To enroll in and be evaluated for this subject, completion and or granted
	exemptions of 3 preparatory courses is required.
Planning	Week 1: Refresh UML, SOLID, and Design Patterns
	 Introduction to UML and its use in object-oriented design
	 Overview of SOLID principles and their importance in designing
	scalable software
	 Common design patterns, such as the Factory pattern and the
	Observer pattern
	Week 2: Classes and Objects, Constructors and Destructors, Object
	Lifecycle, Dunders
	 Introduction to classes and objects in Python
	- Constructors and destructors: what they are and how to use them
	- Object lifecycle management in Python
	- Dunder methods and their importance in object-oriented
	programming
	Week 3: Multiple Class Interaction and Modules
	- Interaction between multiple classes in Python
	- Introduction to Python modules and their use in organizing code
	- Designing modular and maintainable code using modules
	Week 4: List Comprehensions, Generators, and Map-Reduce
	 List comprehensions and generators: what they are and now to use them
	 Map-reduce techniques for parallel processing
	Week 5: Unit of Work and Divide and Conquer Algorithms
	- Divide and conquer algorithms: definition, use cases, and
	examples
	 Applying divide and conquer to parallel solution design
	Week 6 and 7: working on portfolio
Contact time	42 hr (7 weeks 3 x 2-hr blocks/week; i.e. 1 scheduled 6 hours/week in
	total, per 5 EC) – including both plenary activities (e.g. theoretical
	lectures/demonstrations) and supervised practical work (e.g.
	individual/group exercises).
Literature	N/A
External links/sources	External links to e-books and websites are provided on blackboard
Language	English

Module code	BFVM23DATASCNC5
Module name	Data science 5
Module designers	Tsjerk Wassenaar, Fenna Feenstra, Bart Barnard
Contact	Fenna Feenstra
Grading Teachers	Fenna Feenstra
ECTS and grading	5
Learning outcomes	 You utilize an argumentative approach to select and apply appropriate unsupervised machine learning techniques and algorithms for a given problem in life science, while also being able to evaluate their effectiveness. You can execute the general steps of the machine learning lifecycle, including data engineering, model selection,

	 hyperparameter tuning, and model deployment, and apply them effectively to life science problems. You demonstrate knowledge and understanding of the challenges and limitations of unsupervised machine learning in the context of the life science problem at hand
Description	I his course is an introduction to machine learning, with a particular focus on unsupervised machine learning techniques in the domain of life
	Three where this service, students will be mached the basis services and
	techniques of unsupervised machine learning, and how to implement these including data reduction, multidimensional scaling, manifold
	learning, clustering, and outlier detection. They will also be introduced to some of the most widely used algorithms in these areas and how these
	techniques can be applied to problems in life science.
	Furthermore, this course will cover general steps in the machine learning
	lifecycle, including data engineering, model selection, hyperparameter
	By the end of this course, students will have a solid understanding of the
	principles and applications of machine learning in the context of life
	science and be well-prepared to take on more advanced topics in machine
	learning.
Teaching method	Method selection and model development strategies will be discussed
	during lectures and tutorials. Throughout the course, students will work on
	short weekly assignments to reinforce their understanding of the concepts
	taught. Peer feedback will be given to enable students to improve their
	elaboration and design
Scheduled	Quarter 1, Year 2
Assessment	At the end of the term, students will submit a portfolio of their assignments, which will be graded. In case the portfolio is considered
	insufficient specific renair assignments will be given
Competences	Conduct critical and creative research
	Model meaningful information
	Deliver organized solutions
	Communicate Effectively
Entrance requirements	To enroll in and be evaluated for this subject, completion and or granted
	exemptions of 3 preparatory courses is required.
Planning	Week 1: Introduction to Machine Learning
	 Overview of Machine Learning and its applications in life science
	- Basics steps in Python for machine learning
	- Introduction unsupervised learning
	- Dimensionality reduction techniques
	- Clustering techniques
	 Portfolio assignment dataset cluster and visualization
	Week 3: Manifold Learning
	 Introduction to manifold learning and its applications
	 Non-linear dimensionality reduction techniques
	 Portfolio assignment
	Week 4: Outlier Detection
	- I ypes of outlier detection techniques
	- Portfolio assignment
	Data engineering: data preprocessing feature selection and
	feature engineering
	 Model selection and hyperparameter tuning
	 Model deployment: model evaluation and deployment strategies

	Week 6 – 10: Work on portfolio
Contact time	42 hr (7 weeks x 3 x 2-hr blocks/week; i.e. 1 scheduled 6 hr/week in total,
	per 5 EC) – including both plenary activities (e.g. theoretical
	lectures/demonstrations) and supervised practical work (e.g.
	individual/group exercises).
Literature	Géron, Aurélien. Hands-on machine learning with Scikit-Learn, Keras, and
	TensorFlow: Concepts, tools, and techniques to build intelligent systems.
	O'Reilly Media
External links/sources	https://arxiv.org/pdf/2202.02958.pdf
Language	English

Module code	BFVM23PROGRAM6
Module name	Big data computing
Module designers	Bart Barnard, Martijn Herber
Contact	Fenna Feenstra
Grading Teachers	Bart Barnard, Martijn Herber
ECTS and grading	5
Learning outcomes	 You understand the fundamental principles and architecture of cluster computing, including its advantages and limitations compared to traditional computing systems. You analyze the requirements of a specific problem and choose appropriate cluster computing technologies and frameworks to design and implement a solution. You design and deploy applications on cluster computing systems using various tools and frameworks, while considering factors such as scalability, fault tolerance, and load balancing. You develop skills in monitoring and troubleshooting cluster computing systems to identify and resolve issues related to performance security and availability.
Description	This course introduces cluster computing systems and their architecture, communication protocols, and fault tolerance mechanisms. It covers cluster job management systems like Slurm, and how to design and deploy applications for these systems. The course also covers Dask, a Python library for parallel computing on large datasets, and best practices in ML- OPS for efficient and scalable machine learning pipelines on cluster computing systems. Throughout the course, students will gain hands-on experience working with cluster computing systems, including designing, and implementing efficient algorithms, distributing data, and managing resources in a distributed environment. By the end of the course, students will be able to use Slurm and Dask for parallel computing tasks and implement ML-OPS best practices. Overall, the course provides the tools and knowledge necessary to design and implement efficient, scalable, and reliable cluster computing systems for various applications, including machine learning and data analysis.
Teaching method	Principles and strategies will be discussed during lectures and tutorials. Throughout the course, students will work on short weekly assignments to reinforce their understanding of the concepts taught. Peer feedback will be given to enable students to improve their skills
Schodulod	Quarter 2 Voar 2
Scheudieu	

Assessment	At the end of the term students will submit a portfolio of their
	assignments, which will be graded. In case the portfolio is considered
	insufficient specific repair assignments will be given
Competences	Conduct critical and creative research
	Model meaningful information
	Deliver organized solutions
	Communicate Effectively
Entrança requirements	To open in and he evaluated for this subject, completion and or granted
	exemptions of 3 preparatory courses is required.
Planning	Week 1: Introduction to Cluster Computing and Slurm
_	- Introduction to distributed computing systems and their
	applications
	- Overview of cluster computing systems and their architecture
	 Introduction to Slurm: features, advantages, and limitations
	- Setting up a basic Slurm cluster on local machines or cloud
	platforms
	- Introduction to Snakemake: features, advantages, and limitations
	Week 2: Advanced Slurm Features
	 Load balancing and resource allocation in Slurm
	 Fault tolerance and recovery mechanisms in Slurm
	 Configuring and optimizing Slurm for specific use cases
	 Hands-on exercises: deploying and running applications on Slurm
	using Snakemake
	Week 3: Introduction to Dask
	- Overview of Dask: features, advantages, and limitations
	- Dask as a parallel computing framework for large-scale data
	processing
	- Dask array and Dask dataframe for distributed data processing
	 Setting up a Dask cluster on local machines or cloud platforms
	- Introduction to Snakemake worknows with Dask
	Dack task scheduling systemy graph antimization and parallel
	execution
	 Dask performance optimization and scaling strategies
	 Dask as a data science tool: data preparation, feature
	engineering, and model training
	 Hands-on exercises: using Dask for large-scale data processing
	and machine learning with Snakemake
	Week 5: Introduction to ML-OPS
	 Overview of ML-OPS: challenges and best practices
	- Deploying machine learning models on cluster computing systems
	 Monitoring and debugging machine learning pipelines
	- Hands-on exercises: implementing ML-OPS best practices using
	Slurm, Dask, and Snakemake
	week b - / work on portfolio
Contact time	42 rir (7 weeks 3 x 2-nr blocks/week; i.e. 1 scheduled 6 hours/week in
	Local, per 5 EC) – including both plenary activities (e.g. theoretical
	individual (group oversions)
Literature	lituriuudi/gioup exercises).
	External sources will be provided on blackboard
Language	

Omics and Omics research subjects

Module code	BFVM23PREPOMICS
Module name	Preparatory course omics
Module designers	Jurre Hageman
Contact	Fenna Feenstra
Grading Teachers	Jurre Hageman
ECTS and grading	5
Learning outcomes	 You can understand basic physiological processes. You know the core components of both prokaryotic and eukaryotic cells and know their role in the context of cell biology. You know all the actors and components of the Central Dogma of Genetics and can describe what these are and what their role is. You know the types of biological sequences, their characteristics, and their relationships. You can understand basic concepts of laboratory "omics" techniques. You know about the main methods used to analyze sequences (o g Plact alignment manning)
Description	The students will be introduced to basic (animal) physiology, cell biology, and molecular genetics – primarily the Central Dogma. Also, the different types of biological sequences will be introduced; their properties, and ways of analyzing them (alignment, mapping, Blast). This is one of the three optional modules of the Preparatory course. It's intended for students without a background in (molecular) life science (e.g. ICT students). The content provides a base for annotating and understanding biological data
Toophing mothed	Calf study (112 hours) & tutor (2 times 2 hours a weak)
Schodulod	Quarter1 Vear 1
Assessment	Guarteri, real i
Competences	Model meaningful information Communicate Effectively
Entrance requirements	None
Planning	Week 1 – 7
Contact time	28 hr (7 weeks x 2 x 2-hr blocks/week) – theoretical lectures
Literature	https://openstax.org/details/books/biology-2eChapter Chapter titleC3Biological MacromoleculesC4Cell StructureC10Cell ReproductionC11Meiosis and Sexual ReproductionC12Mendel's Experiments and HeredityC14DNA Structure and FunctionC15Genes and ProteinsC16Gene ExpressionC17Biotechnology and GenomicsC10Biotechnology and the History of Life
External links/sources	Blackboard
Languago	Finalish
Language	

Module code	BFVM23DSPH
Module name	Data science for personal health
Module designers	Martijn Herber / Marcel Kempenaar
Contact	Fenna Feenstra
Grading Teachers	Martijn Herber / Marcel Kempenaar
ECTS and grading	10
Learning outcomes	- You implement an advanced web-based visualisation.
	- You design a useable interface to answer a research question.
	- implement appropriate data(base) technologies given
	data sources.
	 You translate design into a project approach and valuable
	IT solution.
	 You collaborate with team members to organise the
	work involved.
	- You pose an exact and answerable research question (hypothesis)
Description	The objective of this research project is to enhance students'
	comprehension of the Data Science domain, particularly in relation to
	personal health. To achieve this, health-related data will be visualized to
	answer health-related research questions. The students will apply
	fundamental data transformation and munging techniques to pre-process
	the data for visualization. Additionally, the project aims to reinforce the
	programming concepts taught in the preparatory course while teaching
	The project follows a sumulative design approach, wherein a basic
	prototype with a simple data structure is developed first followed by more
	advanced iterations on the same theme. This allows students to build upon
	their existing knowledge and progressively enhance their skills
Teaching method	Students will be presented with a wicked, complex, multidisciplinary
	problem that requires an approach to tackle at a master's level. The
	project is designed to challenge the student programming skills, omics
	knowledge, and data science proficiency, promoting learning and
	knowledge development.
	Regular project meetings will be held to provide feedback on personal
	development, project progress, research validity, and product applicability
	in the field. These meetings will facilitate interaction among groups, within
	groups, and with field experts. Additionally, sprint meetings will be held to
	ensure the project stays on track and objectives are met in a timely
	manner.
	To supplement the other modules, masterclasses on additional theoretical
	topics will be organized to enhance students' understanding and support
	their project work. These classes will provide all opportunity for students
	to expand their knowledge beyond the scope of the project and develop a
Schodulod	Quarters 1, 2, 2, Voar 1
Assossment	The accessment will be based on the following deliverables:
Assessment	final presentation (group)
	scientific article (group)
	code (individual)
	conduct (individual)
Competences	Conduct critical and creative research. Model meaningful information.
	Deliver organized solutions, Communicate Effectively, Being responsible.
	Being entrepreneurial
Entrance requirements	None
Planning	A detailed planning will be provided on blackboard. Presence during the
	kick-off and sprint meetings is mandatory. During the kick-off meetings

	further agreements will be made about availability and obligations towards the research team and stakeholders
Contact time	126 hrs, 6 hours a week in general, sometimes 4, sometimes 8 depending on the week task. This includes supervised practical work.
Literature	Recommended: Tufte, E. and Graves-Morris, P., 2014. The visual display of quantitative information.; 1983
External links/sources	Blackboard
Language	English

Integrated omics
Lude Franke
Fenna Feenstra
Tijs van Lieshout/ Fenna Feenstra
10
 You formulate a clear, verifiable hypothesis on the basis of a client's research question; identify and understand possible Omics techniques necessary for answering a research question and hypothesis You evaluate datasets for utility in answering a client's hypothesis You pre-process datasets in order to be able to do inter-dataset analysis You apply and validate data science techniques in pre-processing data and meta-analysis across datasets You identify business and economics factors applicable to the research question and integrate them with the final conclusion (where applicable) You present findings in a clear and scientific manner to the target
audience (client, researchers, peers)
This course introduces the integration of various "omics" techniques that are used to address research questions that cannot be answered by a single analysis. These techniques are both quantitative and high throughput, generating large datasets that can be analysed using advanced statistical and machine learning methods. The course begins by introducing state-of-the-art lab techniques in areas such as (meta)genomics, transcriptomics, metabolomics, proteomics, epigenomics, foodomics, imaging, and epidemiology. Students will have the opportunity to select a research project from partner research centres such as UMCG, AVEBE, KCBBE, and the Digital Society Hub that provide multiple datasets, and formulate and test hypotheses using appropriate data science techniques (Statistcs/Machine Learnng/Artificial Intelligence). A key aspect of this course is effectively communicating the methods and findings to peers and clients. This course builds upon the technologies mastered in the first research project, and when appropriate, visualizations and web techniques from the first project will be utilized to report and clarify findings.
Students will be presented with a wicked, complex, multidisciplinary problem that requires an approach to tackle at a master's level. The project is designed to challenge the student programming skills, omics knowledge, and data science proficiency, promoting learning and knowledge development. Regular project meetings will be held to provide feedback on personal development, project progress, research validity, and product applicability in the field. These meetings will facilitate interaction among groups within

	groups, and with field experts. Additionally, sprint meetings will be held to
	manner.
	Masterclasses on integrated omics theory will be provided by the UMCG in
	the quarter of the project.
Scheduled	Quarter4 Year1, Quarter 1,2 Year 2
Assessment	The assessment will be based on the following deliverables:
	final presentation (group)
	scientific article (group)
	code (individual)
	conduct (individual)
Competences	Conduct critical and creative research, Model meaningful information,
	Deliver organized solutions, Communicate Effectively, Being responsible,
	Being entrepreneurial
Entrance requirements	To enroll in and be evaluated for this subject, at least 30 credits need to be
	obtained. Furthermore, completion and or granted exemptions of 3
	preparatory courses is required.
Planning	Presence during the kickoff and sprint meetings is mandatory. During the
	kickoff meetings further agreements will be made about availability and
	obligations towards the research team and stakeholders. The workshops
	provided by the UMCG are mandatory
Contact time	126 hrs. This includes theoretical background lectures, workshops,
	midterm presentations and progress meetings with the project supervisor.
	The first quarter will contain the most contact hours.
Literature	Relevant scientific papers will be provided on blackboard
External links/sources	Blackboard
Language	English

Module code	BFVM23RPS
Module name	Research and Professional skills
Module designers	Mirjam Lurvink, Tsjerk Wassenaar
Contact	Fenna Feenstra
Grading Teachers	Mirjam Lurvink, Tsjerk Wassenaar
ECTS and grading	10
Learning outcomes	 You demonstrate effective communication and collaboration skills using different communication styles. You demonstrate taking initiative and acting autonomously in the face of challenges, while also being a team player. You develop a simple business case for a new product or methodology and supervise the execution of a project plan to deliver projects on-time and within prescribed conditions. You create a stimulating environment to facilitate and enhance the performance of a project team by recognizing and utilizing individual team members' strengths and personal qualities. You evaluate the relevance and significance of scientific literature in relation to your research. You evaluate the design and outcomes of scientific research in data sciences and/or life sciences, considering the key elements of the scientific process, applied to own work, work of others, and the relation between them. You evaluate the reliability, validity, and reproducibility of data analysis methods and results, both of own research and that of others, before and/or after the research is conducted.

	 You evaluate and address possible ethical, legal, and societal implications of a research project. You evaluate your own learning process and use this to make well-founded choices concerning your personal and professional development.
Description	This course is designed to enhance students' abilities to function as critical, independent, and effective scientific researchers. The course consists of several activities, including a personal assessment (DISC report) to identify preferred communication styles and develop effective communication and collaboration skills. Workshops will cover topics such as code management, version control, business case, IP patenting, and the scrum methodology to teach students to work in a professional environment. Project management lectures will train students to structure project plans, make realistic plans, and integrate effective communication and collaboration skills. The course will also include workshops on lateral thinking, scientific reading and writing, critical thinking, and ethical, legal, and societal implications. All these learning outcomes will be developed and trained throughout the entire master program.
Teaching method	To develop professional skills, students will undergo personal assessments, participate in (peer) feedback sessions, attend (guest) lectures, workshops, and tutor groups. Students can also organize masterclasses. Professional skills workshops are mandatory, and project-based learning is integrated into the course through a series of lectures. Students will receive feedback during scrum and tutor sessions. The course also includes lectures and tutorials to develop research skills. Background theory on the scientific method and experimental design will be covered in (guest) lectures, while critical thinking skills will be developed through active learning methods, including teacher-guided peer-to-peer discussions. The course includes a workshop on ethical, legal, and societal implications (ELSI), as these are an explicit aspect of critical thinking
Scheduled	Quarter1 2 Year1 1 2 Year 2
Assessment	Throughout the entire master's program, students will be evaluated based on their ability to meet the program outcomes through a digital portfolio. The student manual outlines the assessment criteria for each program outcome. Students will create a digital portfolio to track their development and demonstrate proficiency in the competencies described in the program outcomes. Each program outcome must have at least one corresponding proof in the portfolio, which will be assessed based on the criteria outlined for each outcome. At the end of the graduation project phase, the portfolio will be evaluated through a criterion-based interview to determine the student's overall proficiency in meeting the program outcomes.
Competences	Conduct critical and creative research Model meaningful information Deliver organized solutions Communicate Effectively Being responsible Being entrepreneurial
Entrance requirements	N/A
Planning	Weekly workshops (1 professional, 2 research skills): Personal assessment feedback session 2 times, 0.5 hour each time
Contact time	92
Literature	Professional skills material is based on: De, B.E., 1985. Six thinking hats. Boston: Little, Brown De Bono, E., 2010. Lateral thinking: a textbook of creativity. Penguin UK

	Optional literature: Gauch Jr, H.G., 2012. Scientific method in brief. Cambridge University Press.
	Literature will be made available on blackboard
External links/sources	Blackboard
Language	English